Author Affiliations
Abstract
1 Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
2 Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
3 e-mail: xiyuan.lu@nist.gov
Frequency engineering of whispering-gallery resonances is essential in microcavity nonlinear optics. The key is to control the frequencies of the cavity modes involved in the underlying nonlinear optical process to satisfy its energy conservation criterion. Compared to the conventional method that tailors dispersion by cross-sectional geometry, thereby impacting all cavity mode frequencies, grating-assisted microring cavities, often termed as photonic crystal microrings, provide more enabling capabilities through mode-selective frequency control. For example, a simple single period grating added to a microring has been used for single frequency engineering in Kerr optical parametric oscillation (OPO) and frequency combs. Recently, this approach has been extended to multi-frequency engineering by using multi-period grating functions, but at the cost of increasingly complex grating profiles that require challenging fabrication. Here, we demonstrate a simple approach, which we term as shifted grating multiple mode splitting (SGMMS), where spatial displacement of a single period grating imprinted on the inner boundary of the microring creates a rotational asymmetry that frequency splits multiple adjacent cavity modes. This approach is easy to implement and presents no additional fabrication challenges compared to an un-shifted grating, and yet is very powerful in providing multi-frequency engineering functionality for nonlinear optics. We showcase an example where SGMMS enables OPO across a wide range of pump wavelengths in a normal-dispersion device that otherwise would not support OPO.
Photonics Research
2023, 11(11): A72
Author Affiliations
Abstract
1 Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
2 Institute for Research in Electronics and Applied Physics and Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, USA
3 Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
4 Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
5 e-mail: kartik.srinivasan@nist.gov
Whispering-gallery microcavities have been used to realize a variety of efficient parametric nonlinear optical processes through the enhanced light–matter interaction brought about by supporting multiple high quality factor and small modal volume resonances. Critical to such studies is the ability to control the relative frequencies of the cavity modes, so that frequency matching is achieved to satisfy energy conservation. Typically this is done by tailoring the resonator cross section. Doing so modifies the frequencies of all of the cavity modes, that is, the global dispersion profile, which may be undesired, for example, in introducing competing nonlinear processes. Here, we demonstrate a frequency engineering tool, termed multiple selective mode splitting (MSMS), that is independent of the global dispersion and instead allows targeted and independent control of the frequencies of multiple cavity modes. In particular, we show controllable frequency shifts up to 0.8 nm, independent control of the splitting of up to five cavity modes with optical quality factors ?105, and strongly suppressed frequency shifts for untargeted modes. The MSMS technique can be broadly applied to a wide variety of nonlinear optical processes across different material platforms and can be used to both selectively enhance processes of interest and suppress competing unwanted processes.
Photonics Research
2020, 8(11): 11001676

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!